Polenostavne algebre povezane z usmerjenimi grafi in njihove aplikacije / Semi-simples algebras associated to directed graphs and its applications

(SI) Množenje matric (MM) je osnovna operacija linearne algebre, ki ima številne uporabe v teoriji in praksi računanja. Pomen aplikacij je posledica dejstva, da je MM pomemben del več uspešnih algoritmov za druge računske probleme linearne algebre in kombinatorjev, kot so rešitev sistema linearnih enačb, inverzija matrike, ocena determinante matrike, logična MM in tranzitivno zapiranje grafa. V tem projektu bomo preučevali vektorski prostor matric, ustvarjenih z matrico sosednosti usmerjenega grafa, in nas zanima hitri algoritem za izračun moči B^n (n∈N je neko končno število) za dano matriko B (kjer B je matrika, ki izpolnjuje nekatere omejitve).
(EN) Matrix multiplication (MM) is a basic operation of linear algebra, which has numerous applications to the theory and practice of computation. The importance of applications is due to the fact that MM is a substantial part of several successful algorithms for other computational problems of linear algebra and combinators, such as the solution of a system of linear equations, matrix inversion, the evaluation of the determinant of a matrix, Boolean MM and the transitive closure of a graph. In this project, we will study vector space of matrices generated by the adjacency matrix of a directed graph, and we are interested in finding a fast algorithm for computing a power B^n (n∈N is some finite number) for a given matrix B (where B is a matrix that satisfies some restrictions).